HumanBrain
1.0.0
1.0.0
  • What is notes
  • Knowledge Base
    • Machine Learning
      • Gausian Process
    • Math
      • Statistics
        • Importance Sampling
        • Probability And Counting
      • Linear Algebra
        • Dummy
    • Deep Learning
      • Deep Learning
  • Code
    • Code
      • Generative
      • NLP
      • RL
      • Vision
  • Papers
    • papers
  • Notes
    • Cognitive
      • (2016. 4) ML Learn And Think Like Human
    • Optimization
      • (2010. 5) Xavier Initialization
      • (2015. 2) Batch Normalization
      • (2015. 2) He Initialization
    • Reinforcement Learning
      • (2017. 6) Noisy Network Exploration
    • Vision
      • (2013. 12) Network In Network
      • (2014. 12) Fractional Max-pooling
      • (2015. 12) Residual Network
    • Natural Language Processing
      • (2014. 9) Bahdanau Attention
      • (2015. 11) Diversity Conversation
      • (2015. 11) Multi Task Seq2seq
      • (2015. 12) Byte To Span
      • (2015. 12) Vocabulary Strategy
      • (2015. 6) Skip Thought
      • (2015. 6) Teaching Machine Read And Comprehend
      • (2015. 8) Luong Attention
      • (2015. 8) Subword NMT
      • (2016. 10) Bytenet
      • (2016. 10) Diverse Beam Search
      • (2016. 10) Fully Conv NMT
      • (2016. 11) Bidaf
      • (2016. 11) Dual Learning NMT
      • (2016. 11) Generate Wiki
      • (2016. 11) NMT With Reconstruction
      • (2016. 2) Exploring Limits Of Lm
      • (2016. 3) Copynet
      • (2016. 4) NMT Hybrid Word And Char
      • (2016. 5) Adversarial For Semi Supervised Text Classification
      • (2016. 6) Sequence Knowledge Distillation
      • (2016. 6) Squad
      • (2016. 7) Actor Critic For Seq
      • (2016. 7) Attn Over Attn NN RC
      • (2016. 9) PS LSTM
      • (2017. 10) Multi Paragraph RC
      • (2017. 11) Neural Text Generation
      • (2017. 12) Contextualized Word For RC
      • (2017. 3) Self Attn Sentence Embed
      • (2017. 6) Slicenet
      • (2017. 6) Transformer
      • (2017. 7) Text Sum Survey
      • (2018. 1) Mask Gan
      • (2018. 2) Qanet
      • (2018. 5) Minimal Qa
    • Generative
      • (2013. 12) VAE
      • (2014. 6) Gan
      • (2016. 7) Seq Gan
    • Model
      • (2012. 7) Dropout
      • (2013. 6) Dropconnect
      • (2015. 7) Highway Networks
      • (2015. 9) Pointer Network
      • (2016. 10) Fast Weights Attn
      • (2016. 10) Professor Forcing
      • (2016. 3) Stochastic Depth
      • (2016. 7) Layer Normalization
      • (2016. 7) Recurrent Highway
      • (2017. 1) Very Large NN More Layer
      • (2017. 6) Relational Network
Powered by GitBook
On this page
  1. Notes
  2. Natural Language Processing

(2016. 7) Actor Critic For Seq

Previous(2016. 6) SquadNext(2016. 7) Attn Over Attn NN RC

Last updated 6 years ago

  • Submitted on 2016. 7

  • Dzmitry Bahdanau, Philemon Brakel, Kelvin Xu, Anirudh Goyal, Ryan Lowe, Joelle Pineau, Aaron Courville and Yoshua Bengio

Simple Summary

An approach to training neural networks to generate sequences using actor-critic methods from reinforcement learning (RL). Current log-likelihood training methods are limited by the discrepancy between their training and testing modes, as models must generate tokens conditioned on their previous guesses rather than the ground-truth tokens. ...This results in a training procedure that is much closer to the test phase, and allows us to directly optimize for a task-specific score such as BLEU

  • made from the machine translation results is that the training methods that use generated predictions have a strong regularization effect. Our understanding is that conditionin on the sampled outputs effectively increases the diversity of training data.

images
images