HumanBrain
1.0.0
1.0.0
  • What is notes
  • Knowledge Base
    • Machine Learning
      • Gausian Process
    • Math
      • Statistics
        • Importance Sampling
        • Probability And Counting
      • Linear Algebra
        • Dummy
    • Deep Learning
      • Deep Learning
  • Code
    • Code
      • Generative
      • NLP
      • RL
      • Vision
  • Papers
    • papers
  • Notes
    • Cognitive
      • (2016. 4) ML Learn And Think Like Human
    • Optimization
      • (2010. 5) Xavier Initialization
      • (2015. 2) Batch Normalization
      • (2015. 2) He Initialization
    • Reinforcement Learning
      • (2017. 6) Noisy Network Exploration
    • Vision
      • (2013. 12) Network In Network
      • (2014. 12) Fractional Max-pooling
      • (2015. 12) Residual Network
    • Natural Language Processing
      • (2014. 9) Bahdanau Attention
      • (2015. 11) Diversity Conversation
      • (2015. 11) Multi Task Seq2seq
      • (2015. 12) Byte To Span
      • (2015. 12) Vocabulary Strategy
      • (2015. 6) Skip Thought
      • (2015. 6) Teaching Machine Read And Comprehend
      • (2015. 8) Luong Attention
      • (2015. 8) Subword NMT
      • (2016. 10) Bytenet
      • (2016. 10) Diverse Beam Search
      • (2016. 10) Fully Conv NMT
      • (2016. 11) Bidaf
      • (2016. 11) Dual Learning NMT
      • (2016. 11) Generate Wiki
      • (2016. 11) NMT With Reconstruction
      • (2016. 2) Exploring Limits Of Lm
      • (2016. 3) Copynet
      • (2016. 4) NMT Hybrid Word And Char
      • (2016. 5) Adversarial For Semi Supervised Text Classification
      • (2016. 6) Sequence Knowledge Distillation
      • (2016. 6) Squad
      • (2016. 7) Actor Critic For Seq
      • (2016. 7) Attn Over Attn NN RC
      • (2016. 9) PS LSTM
      • (2017. 10) Multi Paragraph RC
      • (2017. 11) Neural Text Generation
      • (2017. 12) Contextualized Word For RC
      • (2017. 3) Self Attn Sentence Embed
      • (2017. 6) Slicenet
      • (2017. 6) Transformer
      • (2017. 7) Text Sum Survey
      • (2018. 1) Mask Gan
      • (2018. 2) Qanet
      • (2018. 5) Minimal Qa
    • Generative
      • (2013. 12) VAE
      • (2014. 6) Gan
      • (2016. 7) Seq Gan
    • Model
      • (2012. 7) Dropout
      • (2013. 6) Dropconnect
      • (2015. 7) Highway Networks
      • (2015. 9) Pointer Network
      • (2016. 10) Fast Weights Attn
      • (2016. 10) Professor Forcing
      • (2016. 3) Stochastic Depth
      • (2016. 7) Layer Normalization
      • (2016. 7) Recurrent Highway
      • (2017. 1) Very Large NN More Layer
      • (2017. 6) Relational Network
Powered by GitBook
On this page
  1. Notes
  2. Vision

(2014. 12) Fractional Max-pooling

Previous(2013. 12) Network In NetworkNext(2015. 12) Residual Network

Last updated 6 years ago

  • Submitted on 2014. 12

  • Benjamin Graham

Simple Summary

Our version of max-pooling is stochastic as there are lots of different ways of constructing suitable pooling regions. We find that our form of fractional max-pooling reduces overfitting on a variety of datasets.

  • Spatial pooling layers are building blocks for Convolutional Neural Networks (CNNs).

  • Max Pooling 2x2

    • Pros:

      1. Fast.

      2. Quickly reduces the size of the hidden layer.

      3. Encodes a degree of invariance with respect to translations and elastic distortions.

    • Cons:

      1. Disjoint nature of pooling regions.

      2. Since size decreases rapidly, stacks of back-to-back CNNs are needed to build deep networks.

  • Fractional Max-Pooling

    • Reduces the spatial size of the image by a factor of α, where α ∈ (1, 2).

    • Introduces randomness in terms of choice of pooling region.

    • Pooling regions can be chosen in a random or pseudorandom manner.

    • Pooling regions can be disjoint or overlapping.

    • Random FMP is good on its own but may underfit when combined with dropout or training data augmentation.

images
images